字体:大 中 小
护眼
关灯
上一页
目录
下一章
第235节 (第7/7页)
,图片中还给出了另外两个定理。 分别是关于超螺旋空间代数的拓扑性质与量子相变跟强关联系统的mott绝缘相的描述,很有意思。 除了第二条外,每条总结出的定理都跟了俩到三个名字。 然后便是相关的十二道例题。 从乔泽的视角来看,这十二道题都很简单。 基本上就是围绕着已经公布的三条定理来的。 不过对于初学者来说,的确挺有用。 这也启发了乔泽。 虽然他不打算在超螺旋空间代数的科普上浪费太多时间,但却可以给这些潜心研究这门学问的数学家跟物理学家们一些小帮助。 毕竟出题对他来说是件很简单的事情,几乎不需要多少时间。 顺便还能把跟超螺旋空间代数相对应的超越几何学引申出来。 想到便做。 很快,乔泽便直接设计出了两个问题。 第一道题是关于超螺旋空间代数的进阶题目:设定一个高维的超螺旋空间代数模型,其哈密顿量为[ h =-tsum_{j=1}^{n}(c_{juparrow}^{dagger}c_{j 1uparrow} c_{jdownarrow}^{dagger}c_{j 1downarrow} ext{h.c.}) 请证明:系统的基态在一定条件下可能发生自旋密度波(spiy wave,sdw)相变,即在系统中形成自旋有序的周期性排列。请分析该模型在零温度下的自旋密度波相变条件,并给出相应的物理解释。
上一页
目录
下一章